Low Power Algorithm Implementation And Verification Using C++

R

Dan Gardner Design Creation and Synthesis Division Mentor Graphics

2

Traditional Flow vs. Catapult Flow

3

Numerical Refinement & Closed Loop Verification

Verification/Validation depends on application and granularity of algorithm

- Bit Error Rate
- Mean Square Error
- No overflows requirement

Floating-point may be optional step

- Code fixed-point from the start
- Simulation speed essential for validation/verification
- Use exact bit-widths required to meet specification and save power/area

Micro-Architecture Optimization

5

Target Optimized RTL Code Generation

Multi-clock Design

- Blocks with lower data rates run with slower clock
 - Reduction in switching power
 - **Reduction in static power by decreasing block area**

Technology Constraints

Architectural Constraints

Closed-loop Power Analysis and Optimization

- Power consumption data annotated into Catapult using leading power analysis tools
- Micro-architecture optimizations used to balance power/area/performance
- Average 30% power savings using this flow

ESL Flow

Additional Information

C Men Plan

di mini

Special Challenges with Mil/Aero DSP "High Cost of Failure"

Design reuse

- Very long product life cycles
- Legacy design difficult to retarget
- **—** Switching between FPGA vendors is very expensive

Design quality

- Achieving optimal numerical precision is difficult
- Finding optimal hardware architecture is time consuming
- Designs are typically overbuilt to guardband design goals

Functional correctness

- Mandatory for mission critical hardware
- Up to 60% of design errors come from disconnect between functional spec and RTL implementation
- RTL is too slow for system verification

Time to Market

- Tight milestones in government projects
- **—** Late changing requirements

Value of Algorithmic Synthesis

Optimized Design Architecture

- RTL confines your implementation to few solutions in close proximity
- Structural languages offer limited tradeoff's
 - Architectural details embedded in the source
- Restricted ANSI C
 - Limits reuse
 - Complicates coding style
 - Prevents bit-accurate modeling & numerical refinement
- Pure ANSI C++ allows exhaustive exploration of design space
 - Extremely compact
 - Object oriented hardware reuse
 - Optimization through interactive constraints
 - Optimize serial vs. parallel
 - Optimize sequential vs. pipelined

Interface Optimization With Interface Synthesis

14

Patent-pending

C++ source and testbench independent of HW interface

- Designers focus on architecture and function
- Micro-architecture tuned to the interface
 - Memories
 - **–** Busses
 - Streaming data
- Adjust bit-widths to balance performance and power

Memory Architecture in C++

- Power, performance and area for many algorithms are highly dependent on memory architecture
- C++ makes various memory architectures easy to explore
 - For example, something as simple as a FIR filter can take numerous "forms"

System Level Capabilities

Catapult Verification Extension SCVerify

- SystemC Transactors
- Original C++ testbench reused to verify the RTL
- Transactors convert function calls to pin-level signal activity
- Push button solution creates Makefiles and Simulation Scripts

Catapult & Mathworks Partnership

- Provides link between Catapult and MATLAB/ Simulink
 - System Simulation
 - Numerical refinement
 - HW verification
- Closes the gap between algorithm design and implementation
- Focus on high-end FPGA and ASIC

